References¶
- Ahmed et al., 2012
Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., & Smola, A. J. (2012). Scalable inference in latent variable models. Proceedings of the fifth ACM international conference on Web search and data mining (pp. 123–132).
- Aji & McEliece, 2000
Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE transactions on Information Theory, 46(2), 325–343.
- Bahdanau et al., 2014
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
- Bishop, 1995
Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural computation, 7(1), 108–116.
- Bishop, 2006
Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
- Bojanowski et al., 2017
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.
- Bollobas, 1999
Bollobás, B. (1999). Linear analysis. Cambridge University Press, Cambridge.
- Boyd & Vandenberghe, 2004
Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge, England: Cambridge University Press.
- Brown & Sandholm, 2017
Brown, N., & Sandholm, T. (2017). Libratus: the superhuman ai for no-limit poker. IJCAI (pp. 5226–5228).
- Campbell et al., 2002
Campbell, M., Hoane Jr, A. J., & Hsu, F.-h. (2002). Deep blue. Artificial intelligence, 134(1-2), 57–83.
- Cho et al., 2014
Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
- Chung et al., 2014
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
- DeCandia et al., 2007
DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., … Vogels, W. (2007). Dynamo: amazon’s highly available key-value store. ACM SIGOPS operating systems review (pp. 205–220).
- Doucet et al., 2001
Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential monte carlo methods. Sequential Monte Carlo methods in practice (pp. 3–14). Springer.
- Duchi et al., 2011
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121–2159.
- Flammarion & Bach, 2015
Flammarion, N., & Bach, F. (2015). From averaging to acceleration, there is only a step-size. Conference on Learning Theory (pp. 658–695).
- Glorot & Bengio, 2010
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249–256).
- Goh, 2017
Goh, G. (2017). Why momentum really works. Distill. URL: http://distill.pub/2017/momentum, doi:10.23915/distill.00006
- Goodfellow et al., 2016
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.
- Goodfellow et al., 2014
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems (pp. 2672–2680).
- Gotmare et al., 2018
Gotmare, A., Keskar, N. S., Xiong, C., & Socher, R. (2018). A closer look at deep learning heuristics: learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243.
- Graves & Schmidhuber, 2005
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm and other neural network architectures. Neural networks, 18(5-6), 602–610.
- Hadjis et al., 2016
Hadjis, S., Zhang, C., Mitliagkas, I., Iter, D., & Ré, C. (2016). Omnivore: an optimizer for multi-device deep learning on cpus and gpus. arXiv preprint arXiv:1606.04487.
- Hazan et al., 2008
Hazan, E., Rakhlin, A., & Bartlett, P. L. (2008). Adaptive online gradient descent. Advances in Neural Information Processing Systems (pp. 65–72).
- He et al., 2016a
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
- He et al., 2016b
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. European conference on computer vision (pp. 630–645).
- Hebb & Hebb, 1949
Hebb, D. O., & Hebb, D. (1949). The organization of behavior. Vol. 65. Wiley New York.
- Hennessy & Patterson, 2011
Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a quantitative approach. Elsevier.
- Hochreiter & Schmidhuber, 1997
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
- Hoyer et al., 2009
Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. Advances in neural information processing systems (pp. 689–696).
- Hu et al., 2018
Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).
- Huang et al., 2017
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).
- Ioffe, 2017
Ioffe, S. (2017). Batch renormalization: towards reducing minibatch dependence in batch-normalized models. Advances in neural information processing systems (pp. 1945–1953).
- Ioffe & Szegedy, 2015
Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
- Izmailov et al., 2018
Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2018). Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407.
- Jia et al., 2018
Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., … others. (2018). Highly scalable deep learning training system with mixed-precision: training imagenet in four minutes. arXiv preprint arXiv:1807.11205.
- Jouppi et al., 2017
Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., … others. (2017). In-datacenter performance analysis of a tensor processing unit. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) (pp. 1–12).
- Karras et al., 2017
Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.
- Kingma & Ba, 2014
Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Kolter, 2008
Kolter, Z. (2008). Linear algebra review and reference. Available online: http.
- Koren, 2009
Koren, Y. (2009). Collaborative filtering with temporal dynamics. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447–456).
- Krizhevsky et al., 2012
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097–1105).
- Kung, 1988
Kung, S. Y. (1988). Vlsi array processors. Englewood Cliffs, NJ, Prentice Hall, 1988, 685 p. Research supported by the Semiconductor Research Corp., SDIO, NSF, and US Navy.
- LeCun et al., 1998
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & others. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
- Li, 2017
Li, M. (2017). Scaling Distributed Machine Learning with System and Algorithm Co-design (Doctoral dissertation). PhD Thesis, CMU.
- Li et al., 2014
Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., … Su, B.-Y. (2014). Scaling distributed machine learning with the parameter server. 11th $\$USENIX$\$ Symposium on Operating Systems Design and Implementation ($\$OSDI$\$ 14) (pp. 583–598).
- Lin et al., 2013
Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.
- Lin et al., 2010
Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., … others. (2010). Imagenet classification: fast descriptor coding and large-scale svm training. Large scale visual recognition challenge.
- Lipton & Steinhardt, 2018
Lipton, Z. C., & Steinhardt, J. (2018). Troubling trends in machine learning scholarship. arXiv preprint arXiv:1807.03341.
- Liu et al., 2019
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., … Stoyanov, V. (2019). Roberta: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
- Loshchilov & Hutter, 2016
Loshchilov, I., & Hutter, F. (2016). Sgdr: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.
- Luo et al., 2018
Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding regularization in batch normalization. arXiv preprint.
- McCulloch & Pitts, 1943
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.
- McMahan et al., 2013
McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., … others. (2013). Ad click prediction: a view from the trenches. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1222–1230).
- Mikolov et al., 2013a
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Mikolov et al., 2013b
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems (pp. 3111–3119).
- Nesterov & Vial, 2000
Nesterov, Y., & Vial, J.-P. (2000). Confidence level solutions for stochastic programming, Stochastic Programming E-Print Series.
- Nesterov, 2018
Nesterov, Y. (2018). Lectures on convex optimization. Vol. 137. Springer.
- Parikh et al., 2016
Parikh, A. P., Täckström, O., Das, D., & Uszkoreit, J. (2016). A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933.
- Park et al., 2019
Park, T., Liu, M.-Y., Wang, T.-C., & Zhu, J.-Y. (2019). Semantic image synthesis with spatially-adaptive normalization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2337–2346).
- Pennington et al., 2014
Pennington, J., Socher, R., & Manning, C. (2014). Glove: global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543).
- Peters et al., 2017
Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: foundations and learning algorithms. MIT press.
- Petersen et al., 2008
Petersen, K. B., Pedersen, M. S., & others. (2008). The matrix cookbook. Technical University of Denmark, 7(15), 510.
- Polyak, 1964
Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17.
- Radford et al., 2019
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
- Reddi et al., 2019
Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237.
- Reed & DeFreitas, 2015
Reed, S., & De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint arXiv:1511.06279.
- Russell & Norvig, 2016
Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,.
- Santurkar et al., 2018
Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization? Advances in Neural Information Processing Systems (pp. 2483–2493).
- Schuster & Paliwal, 1997
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681.
- Sennrich et al., 2015
Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909.
- Sergeev & DelBalso, 2018
Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799.
- Silver et al., 2016
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., … others. (2016). Mastering the game of go with deep neural networks and tree search. nature, 529(7587), 484.
- Simonyan & Zisserman, 2014
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- Smola & Narayanamurthy, 2010
Smola, A., & Narayanamurthy, S. (2010). An architecture for parallel topic models. Proceedings of the VLDB Endowment, 3(1-2), 703–710.
- Srivastava et al., 2014
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
- Strang, 1993
Strang, G. (1993). Introduction to linear algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA.
- Sukhbaatar et al., 2015
Sukhbaatar, S., Weston, J., Fergus, R., & others. (2015). End-to-end memory networks. Advances in neural information processing systems (pp. 2440–2448).
- Sutskever et al., 2013
Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. International conference on machine learning (pp. 1139–1147).
- Szegedy et al., 2017
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence.
- Szegedy et al., 2015
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).
- Szegedy et al., 2016
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
- Tallec & Ollivier, 2017
Tallec, C., & Ollivier, Y. (2017). Unbiasing truncated backpropagation through time. arXiv preprint arXiv:1705.08209.
- Teye et al., 2018
Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty estimation for batch normalized deep networks. arXiv preprint arXiv:1802.06455.
- Tieleman & Hinton, 2012
Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26–31.
- Vaswani et al., 2017
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems (pp. 5998–6008).
- Wang et al., 2018
Wang, L., Li, M., Liberty, E., & Smola, A. J. (2018). Optimal message scheduling for aggregation. NETWORKS, 2(3), 2–3.
- Wang et al., 2016
Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., & Owens, J. D. (2016). Gunrock: a high-performance graph processing library on the gpu. ACM SIGPLAN Notices (p. 11).
- Wasserman, 2013
Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science & Business Media.
- Watkins & Dayan, 1992
Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279–292.
- Welling & Teh, 2011
Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 681–688).
- Wigner, 1958
Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. Math (pp. 325–327).
- Wood et al., 2011
Wood, F., Gasthaus, J., Archambeau, C., James, L., & Teh, Y. W. (2011). The sequence memoizer. Communications of the ACM, 54(2), 91–98.
- Wu et al., 2017
Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent recommender networks. Proceedings of the tenth ACM international conference on web search and data mining (pp. 495–503).
- Xiao et al., 2017
Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.
- Xiong et al., 2018
Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., & Stolcke, A. (2018). The microsoft 2017 conversational speech recognition system. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5934–5938).
- You et al., 2017
You, Y., Gitman, I., & Ginsburg, B. (2017). Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888.
- Zaheer et al., 2018
Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive methods for nonconvex optimization. Advances in Neural Information Processing Systems (pp. 9793–9803).
- Zeiler, 2012
Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.
- Zhu et al., 2017
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE international conference on computer vision (pp. 2223–2232).